
FAST User’s Manual
Document version 0.06.02

1 Introduction
The Flexible Analysis and Storage Toolkit (FAST) is a set of tools designed to help improve
the performance—primarily the speed—of singly-threaded computer programs written in
C or C++. It has components for the collection, analysis, and display of performance data.

The tools in the suite are designed to allow the user access to as much of the measured
data as possible, and to customize his view of the data. They are designed for exploratory
data analysis, because understanding the performance of large and complex programs is
a task that requires as much creativity as many physics analyses.

2 Why does this tool exist?
Applications in High Energy Physics (HEP) have several features that make the standard
profiling tools difficult to use for performance analysis. The applications run a large body of
C++ code comprised of many independently developed algorithms, assembled into a serial
pipeline. These algorithms manipulate many complex data structures. The complexity of
these applications makes it difficult to localize the causes of poor performance. Often, a
body of code performs poorly in one calling context, but not in others. To diagnose such
situations, call path information is essential.

A detailed discussion of the requirements of FAST can be found in the companion
document The FAST project, available from the FAST project web site.

3 Overview
FAST consists of several subsystems:

• SIMPLEPROFILER, the data collection component,
• PROFGRAPH, a call graph1 analysis tool,

1A call graph is a directed graph that represents calling relationships between subroutines in a computer
program. [1]

https://cdcvs.fnal.gov/redmine/projects/show/fast

• PROFSAVE, a tool for managing large amounts of profiling data, and
• PROFSTATS, a tool for statistical analysis of profiling data.

In this prerelease, the PROFSAVE and PROFSTATS components are not yet included.

3.1 SIMPLEPROFILER

SIMPLEPROFILER is the data collection part of FAST. SIMPLEPROFILER contains a sampling-
based (or statistical) call graph profiler for use with single-threaded applications. SIM-
PLEPROFILER is non-intrusive; no instrumentation of the target program is necessary.2

As a sampling profiler, SIMPLEPROFILER periodically samples the target program, as-
sembling, over time, a statistical estimate of the time each function or subroutine of the
target program consumes. As a call graph profiler, each sample records not only the active
function, but the full call stack3of the target program.

The SIMPLEPROFILER package includes the measurement tool (the dynamic library
libSimpleProfiler—the suffix of the filename depends on your operating system), as
well as some programs to simplify the use of the measuring tool:

• profdemangle, a program to provide “demangled” C++ function names for each C++
function listed in the profiler output, and

• profrun, a program that automates the process of collecting profiling data and
system performance data, which is useful when studying the effect of the system
state on the behavior of the program being profiled.

End-users do not generally need to call profdemangle; it is automatically called by
profrun.

3.2 PROFGRAPH

PROFGRAPH is the call graph analysis tool in FAST. It uses GRAPHVIZ to produce a
visualization of the call graph represented in the data collected by SIMPLEPROFILER.
Because the call graph for large programs can be unwieldy, PROFGRAPH allows the user to
filter the input. The user specifies a function on which to concentrate, and can optionally
determine what amount of the call stack should be included in the output. One can also
filter out little-used paths, to further reduce the clutter common to the call graphs of large
programs.

Call graph analysis can be a valuable first step when one is trying to understand the
dynamic structure of a large body of code with which one is not familiar. It can also be
invaluable in understanding conditions in which the speed of a given function is dependent
upon the context in which it is called.

4 Getting started
4.1 Prerequisites

Instructions for downloading and building the FAST software, including the components
of SIMPLEPROFILER, are available at the project web site: https://cdcvs.fnal.gov/
redmine/projects/show/fast.

FAST is built upon other software, including:

2The target executable must be built with debug symbols for SIMPLEPROFILER to be able to identify function
names.

3A call stack is a stack data structure that stores information about the active subroutines of a computer
program. [2]

2

https://cdcvs.fnal.gov/redmine/projects/show/fast
https://cdcvs.fnal.gov/redmine/projects/show/fast

• LIBUNWIND, which is used to capture the call stack, and is needed for building
libSimpleProfiler,

• LIBBFD and its dependencies, an optional component used to improve the quality of
resolution of addresses to function names, and

• LIBRT, an optional component to provide high-resolution timer support for run time
counters.

Optionally used are:
• Ruby, either version 1.8.x or version 1.9.x, which is used for creating call graphs,
• GRAPHVIZ, which is used to create graphical displays of call graphs,
• PS2PDF, for the creation of PDF files from GRAPHVIZ,
• SAR, for the collection of system activity data during profiling,
• NUMACTL, to control the NUMA policy for the profiled program, and
• R, for statistical and graphical analysis of profiling results.

4.2 Quick start

To obtain your first set of measurements with SIMPLEPROFILER, after building the tools,
run the profrun command, giving it the name of the program you want to profile as an
argument:

$> source <path-to-fast>/etc/setup
$> profrun myprog

This will run the program myprog while collecting both profiling data and system
performance data. Output of this process will be written to several files, with the name
profdata_n_<x>, where n is the process id of the profiled program, and <x> takes many
different values. The content of each of these files is explained in §7, below.

5 How FAST collects data
5.1 Profiling data

As stated above, SIMPLEPROFILER is a sampling, or statistical, profiler. The actual work
of collecting samples is done by code in a dynamic library, libSimpleProfiler. Once
loaded by the operating system’s dynamic loader, libSimpleProfiler registers a signal
handler to respond to the SIGPROF signal, and then sets up an interval timer to send
the SIGPROF signal every ten milliseconds. Each call to the registered signal handler
captures a single sample.

A sample consists of a series of memory addresses which make up the call stack,
the location in memory to which each called function will return when that function is
completed. These samples are buffered in memory, and when a sufficient number have
been recorded, they are written to the raw data file described in section 7.5.

When the program’s main function exits, the raw data files written during data collec-
tion are processed, and the several output files described in section 7 are written.

5.2 System activity data

On supported systems4, the profrun script offers the ability to collect system activity
information, using sar. This information can be used to identify “bad” profiling data

4Currently only Linux.

3

linux$ profrun
Usage: profrun [profrun options ...] program [program options ...]
where program is the program to be profiled and options are indicated
below.

Examples: profrun examples/ex01/Linux.x86_64/ex01
profrun -s examples/ex01/Linux.x86_64/ex01

Profrun options
-h or --help Print this help message.
-v or --version Print SimpleProfiler version.
-s or -{}-sar Run program while collecting SAR data (Linux only).
-n or --numactl Turn off the use of numactl (Linux only).

Program options
Any options used by the program you wish to profile.

Figure 1: Printout from profrun, run with no arguments.

sets—where “bad” means that system activity from other processes interfered with the
operation of the program being profiled, or collection of profiling data, rendering the
profiling data suspect.

If recording of system activity data is selected, several additional data files are written,
as described in section 7.6.

6 Measuring your application

The easiest way to collect profiling data for your application is to use the script profrun.
If, for some reason, profrun fails in your environment, it is possible to collect data by
using libSimpleProfiler directly. This is not recommended for normal use.

6.1 Using profrun

To enable use of profrun, one must first set up the appropriate environment. The script
etc/setup is provided to do this, for both C-family and sh-family shells.

Running etc/setup puts the directory containing the programs provided by FAST,
including profrun, onto the PATH. Running profrun with no arguments yields a printout
of profrun’s help message. Figure 1 shows the printout. On a platform for which SAR
data collection is not yet supported by FAST, the -s|--sar switch is not available.

6.2 Using libSimpleProfiler directly

It is possible to use libSimpleProfiler directly, without relying on the profrun script.
To do so, one must arrange to have the dynamic library libSimpleProfiler loaded before
program start-up. On Linux, this can be done using LD_PRELOAD. Please consult your
system’s documentation for how to use these environment variables.

4

Users who use libSimpleProfiler directly should also run profdemangle on the
names file (see Section 7), to put it into the canonical format. profdemangle takes a
single argument, the filename of the names file that is to be modified.

7 Understanding the profiling data

Each time you collect data using SIMPLEPROFILER, a set of files are written containing the
profiling data. The two files of primary importance written by SIMPLEPROFILER are the
names file and the paths file. Each of these is explained, in detail, in sections 7.2 and 7.3.
The contents of the other files are both simpler and less important; they are summarized
together in section 7.5. Additional files written when the -s|--sar switch is used are
summarized in 7.6.

7.1 The raw data file

The raw data collected during profiling is written to the raw data file. This file has a name
in the format profdata_<pid1>_<pid2>_<disambiguation string>. For programs that
do not fork additional processes, <pid1> and <pid2> will be the same number, the id
of the process that ran the program being profiled. For programs that fork additional
processes, <pid1> is the process id of the parent, <pid2> is the process id of the process
whose data is in that file, and <disambiguation string> is a string of random numbers
to prevent runs that use many <pid1> from inadvertantly overwriting data.

The raw data file contains an eight-byte header, which contains the identifying four-
character “FAST”, three bytes of file version information, and one byte telling the size n (in
bytes) of the pointers recorded in the sample data.

Following the header is the sample data, in the format of a series of call stack dumps.
Each call stack dump consists of an n-byte unsigned integer, which specifies the depth of
the call stack, followed by that many additional n-byte unsigned integers, each of which
corresponds to an address read from the call stack.

7.2 Contents of the names file

Data for every function observed in any call stack sample is summarized in the names
file. This file has a name in the format profdata_<pid1>_<pid2>_<disambiguation
string>_names. The names file contains tab-delimited columnar data. Each line of
the output contains information about a single function or subroutine of the observed
program.

There are at least nine columns in the raw output file; an optional tenth column is
added in post-processing. This post-processing is done automatically by profrun. These
columns contain the following information.

1. the function id, an integer identifier assigned for its associated function. These
identifiers are unique only within the scope of a single run of SIMPLEPROFILER; a
second run of the same program might not yield the same function identifiers for
some (or more rarely all) of the functions.

2. The address of the function in memory.
3. The leaf count for the function. This is the number of times the function was observed

as the last entry in the call stack. This number is proportional to the amount of
time that was spent executing the code of the corresponding function, not including
functions it calls. Some profilers call this the exclusive time taken by the function.

5

4. The total count for the function. This is the total number of times the function
appeared in the call stack. This number can be informative when analyzing recursive
functions. Because a single sample can observe the same function multiple times,
this number is not related in any simple way to the time spent in this function.

5. The path count for the function. This is the total number of times the function was
observed anywhere in the call stack. It is therefore always at least equal to, and
often greater than, the leaf count. This number is proportional to the amount of time
that was spent executing the code of the corresponding function plus the time spent
executing all the functions it calls. Some profilers call this the inclusive time taken
by the function. For functions that are not recursive, this number will be equal to
the total count; for deeply recursive functions, this value can be much smaller than
the total count.

6. The leaf fraction for the associated function. This is the ratio of the leaf count for this
function divided by the total number of samples taken.

7. The path fraction for the associated function. This is the ratio of the path count
for this function divided by the total number of samples taken. Because sampling
actually begins slightly before the profiled program begins, this number is usually
slightly less than one even for the top-level function of the program being profiled.

8. The (dynamic) library in which the associated function is located. A short version of
the library name is printed, in order to help keep the display compact. See section 7.4
for the location of the full path information. Note also that functions compiled directly
into the profiled program are shown as belonging to a library with same name as the
executable.

9. The name of the associated function. For C++ functions, this is the so-called “mangled”
function name.

In post-processing, which can be performed automatically by profrun, an optional
tenth column can be added. This column contains the so-called “unmangled” function
name. For non-C++ functions, this is does not differ from the contents of the previous
column. For C++ functions, this column shows the name of the function in a much more
human-friendly format. Because some C++ implementations (e.g., GCC) can create, for
implementation-specific purposes, more than one implementation for a given function, it
is possible that the some unmangled function names may appear more than once. Only
the function identifiers and mangled function names are guaranteed to be unique.

Because it is possible to obtain some samples with zero-length paths, the sum over
all functions of the leaf counts might be less than the total number of samples taken. A
zero-length sample is obtained when LIBUNWIND, engaged from the signal handler function,
is unable to find the stack of the main program.

7.3 Contents of the paths file

The function return addresses, written into the raw data, are converted into the relevant
function names. Each observed sequence of function names is called a path; data for
each distinct path observed by the profiler is recorded in the paths file. This file has a
name in the format profdata_<pid1>_<pid2>_<disambiguation string>_paths. The paths
file contains line-oriented data; each line corresponds to a distinct observed call path.
Each line consists of a series of tab-separated integers. On each line, the first value is
the id for that path, and the second value is the number of times that path was observed
during sampling. The remainder of the line is a sequence of one or more function ids,
denoting the functions observed in the call path. These are the same function ids as are
used in the names file.

6

7.4 Contents of the libraries file

Data for each (dynamic) library observed during profiling is summarized in the libraries
file. This file has a name in the format profdata_<pid1>_<pid2>_<disambiguation
string>_libraries. The libraries file contains line-oriented data; each line consists of
tab-separated fields. Each line corresponds to an individual library. The first field in the
line is the full path to the library; the second field is the short name (as used in the names
file) for this library, and the third field is the sum of the leaf counts for all the functions
belonging to this library.

The full path to the library is printed, to help distinguish between different versions of
libraries with the same name. Note also that functions compiled directly into the profiled
program are shown as belonging to a library with same name as the executable.

7.5 Other files

SIMPLEPROFILER writes three additional files, which contain information that is generally
not of direct use to the end-user. Each of these files has a filename of the format
profdata_<pid1>_<pid2>_<disambiguation string>_ suffix, where the suffix is one
of maps, sample_info, timing, or totals.

The maps file

Under operating systems that support the proc filesystem, the maps file contains data
describing the memory locations into which the different dynamic libraries were loaded.
On such systems, this file is a copy of the proc/<pid2>/maps file. Under operating
systems that do not support the proc filesystem, the maps file is empty.

The timing file

Contains timing information for when profiling began and ended. It makes use of the
gettimeofday() function, the rdtsc instruction, and, on platforms that support it, the
clock_gettime() function as timing sources. Due to power management and other factors
which can alter the rate at which a timing source accumulates, one or more of the timing
sources may be skewed from the others at times, so knowledge of the system on which
profiling occurs is useful for selecting the correct timing source. Each source provides a
start count, end count, and the difference between them.

The totals file

The totals file contains the total count of several distinct types of quantities: the number of
samples observed, the number of distinct functions observed, and the number of distinct
paths observed.

The debugging file

This file contains information that is sometimes useful to the developers of FAST, but is
not relevant for users.

7.6 The optional system activity data files

On systems that support multiple simultaneous users, use of system resources by pro-
cesses other than that being profiled can render the profiling information collected by a

7

sampling profiler unusable for the purpose for which it is intended. To help avoid such
problems, it is useful to be able to evaluate system activity data describing the operating
conditions of the system on which the profiled program was run. Such data can be used
to identify profiling runs rendered suspect because of heavy load, memory swapping, or
other deleterious conditions caused by other processes.

profrun supports collection of system activity data on Linux, using the sar facility,
which is enabled using the -s|--sar switch.

If the use of sar is activated, profrun begins data collection using sar -A before the
program to be profiled is started. Data are sampled at 30-second intervals. sar data
collection is stopped after the program being profiled exits. For programs that run in less
than the time of the system data sampling, the generated data files may be empty.

A total of ten additional files are written when sar collection is enabled:
1. The file profdata_<pid1>_sar contains the binary data written directly by sar.
2. The file profdata_<pid1>_io contains I/O and transfer rate statistics, from sar
-b.

3. The file profdata_<pid1>_paging contains paging statistics, from sar -B.
4. The file profdata_<pid1>_interrupts contains interrupt summary statistics, from

sar -I SUM.
5. The file profdata_<pid1>_cpu contains per-processor and total CPU utilization

statistics, from sar -P ALL.
6. The file profdata_<pid1>_load contains run queue length and load averages, from

sar -q.
7. The file profdata_<pid1>_memory contains memory and swap space use statistics,

from sar -r.
8. The file profdata_<pid1>_memrates contains memory statistics, from sar -R.
9. The file profdata_<pid1>_ctxswitch contains system switching statistics, from

sar -w.
10. The file profdata_<pid1>_swapping contains system swapping statistics, from sar

-W.
For detailed descriptions of the collected data, please refer to the manual page for sar

on your system.

8 Generating call graphs
The program profgraph can be used to generate a graphical view showing the calling
relation of the functions in your program. This view is generated from the sampled function
calls, so it will usually not show all the possible call paths that the program could have
executed.

Running profgraph -h yields a printout of profgraph’s help message. Figure 2 on
the next page shows the printout.

profgraph produces a graphical display of part of the full call data. The user selects
(by function id, which can be obtained from the names file) a function on which the display
will concentrate. profgraph first selects only those paths which contain the function
indicated by the user. It then filters out paths with a path count less than that the value
for trim-count specified on the command line. Finally, it selects those functions in a
window of size indicated by nodes-up and nodes-down around the indicated function,
and produces a graph containing those functions.

Each distinct function is indicated by a node on the graph. Each node contains:
• the function name, shortened for display purposes, and only if the -n|--names switch

is supplied,
8

linux$ profgraph -h
profgraph - produce a Graphviz graph from SimpleProfiler profiling data.

SYNOPSIS
profgraph [opts] run-id [func-id [nodes-up [nodes-down [trim-count]]]]

DESCRIPTION

Produce a Graphviz graph for the profiling data from the run specified
by run-id. The graph is ’centered’ on the function specified by
function-id. If nodes-up is supplied, only that many nodes in the up
direction (toward main) will be shown; if not used, 5 nodes will be
shown. If nodes-down is supplied, only that many nodes toward the leaf
will be shown. If not supplied, 5 nodes will be shown. If trim-count is
supplied, only paths in the path file with a path count greater than or
equal to trim-count will be retained in the graph. If not supplied, no
trimming is done.

-h, --help
Print this help and exit.

-v, --version
Print the version number and exit.

-n, --names
Print function names rather than function IDs in the printed graph.

-f, --format=FORMAT
Use graphics format FORMAT for Graphviz output. Any graphics format
understood by ’dot’ can be used. In addition, if --format=pdf is used,
PDF output will be generated by using the layout engine with -Tps2, and
then running ps2pdf.

-l, --layout=LAYOUT
Use the layout engine LAYOUT. If not specified, the default it to use
dot. Other choices include fdp, neato, and circo.

Figure 2: Printout from profgraph -h.

• the function id, as found in the names file,

• the path count and path fraction for the function,

• the leaf count and leaf fraction for the function, and

• the library in which the function is found.

The arcs connecting the nodes show which function calls which function. The number
on the arc indicates the sum over paths of the path counts of each path containing that
function call.

To help the user identify the function of interest in large graphs, the node for that
function is colored green. If the call graph is sufficiently large, the call paths with the

9

largest fraction of counts will appear in red, and with wider arrows connecting the nodes.

9 Known limitations
SIMPLEPROFILER relies upon LIBUNWIND, and thus is constrained by its limitations.

On 64-bit Linux systems, LIBUNWIND has troubles unwinding the stack through system
calls. A sign of this problem is the appearance of “disconnected” paths, that is, paths
that do not contain the main function of the program being profiled. These failures most
often appear when a sample is taken while the program is executing system code. Some
number of these paths are failures of symbol lookup as opposed to failures to unwind
through system code and installing binutils-devel and zlib-devel to enable bfd resolution
support may resolve some of these failures. In addition, missing unwind information in
system libraries contributes to this problem and newer versions of system libraries, or
compilation of system libraries using a more recent library may resolve these issues.

There is no installation target for the build system; currently, the user must delete
unnecessary files and directories himself, and is then free to move the remaining directory
tree.

Bibliography
[1] Wikipedia: http://en.wikipedia.org/w/index.php?title=Call_graph&oldid=

324940773.

[2] Wikipedia: http://en.wikipedia.org/w/index.php?title=Call_stack&oldid=
325234638

10

http://en.wikipedia.org/w/index.php?title=Call_graph&oldid=324940773
http://en.wikipedia.org/w/index.php?title=Call_graph&oldid=324940773
http://en.wikipedia.org/w/index.php?title=Call_stack&oldid=325234638
http://en.wikipedia.org/w/index.php?title=Call_stack&oldid=325234638

	Introduction
	Why does this tool exist?
	Overview
	SimpleProfiler
	ProfGraph

	Getting started
	Prerequisites
	Quick start

	How FAST collects data
	Profiling data
	System activity data

	Measuring your application
	Using profrun
	Using libSimpleProfiler directly

	Understanding the profiling data
	The raw data file
	Contents of the names file
	Contents of the paths file
	Contents of the libraries file
	Other files
	The optional system activity data files

	Generating call graphs
	Known limitations
	Bibliography

